EXERCISES (CHERN CLASSES)

Two good references for Chern classes and vector bundles

- (1) Intersection Theory in Algebraic Geometry, freely available at https://scholar.harvard.edu/files/joeharris/files/000-final-3264.pdf
- (2) The all time classic *Characteristic classes* by Milnor and Stasheff

1. Vector bundles

Exercise 1 (Grassmannians). $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . For $k \leq n$ the Grassmanian $\mathbf{Gr}(k, n)$ is defined to be the set

 ${E \subset \mathbb{K}^n \mid E \text{ is a } \mathbb{K} - vector \text{ subspace of dimension } k}$

- (1) Show that $\mathbf{Gr}(k,n)$ can be given the structure of a k(n-k)-manifold (real or complex depending on \mathbb{K}).
- (2) Show that $\mathbf{Gr}(k, n)$ is compact.

Exercise 2. Show that any vector bundle over a contractible manifold is trivial.

Exercise 3. Show that there are exactly two equivalence classes of real vector bundles over S^1 , and one equivalence class of complex vector bundle over S^1 .

Exercise 4 (*G*-bundles). Let *G* be a subgroup of $\operatorname{GL}(n, \mathbb{K})$. A *G*-bundle is a vector bundle defined by an atlas of charts, the transition maps $U_i \cap U_j \times \mathbb{R}^n \longrightarrow U_i \cap U_j \times \mathbb{R}^n$ of which are of the form

$$(x,v) \longrightarrow (x,g(x)v)$$

with $g(x) \in G$ for all x.

- (1) A Euclidean bundle is a O(n)-bundle. Show that any real vector bundle can be endowed with the structure of a Euclidean bundle.
- (2) Show that any orientable 2-dimensional real bundle can be given the structure of a complex line bundle.

Exercise* 5. Let E be a complex line bundle over a compact manifold M. Show that there exist a continuous map

$$f: M \longrightarrow \mathbf{P}^m(\mathbb{C})$$

such that E is the pull-back of the tautological bundle over $\mathbf{P}^m(\mathbb{C})$ for a certain $m \in \mathbb{N}$.

2. FIRST CHERN CLASS AND LINE BUNDLES

Exercise 6 (Classification of real line bundles). Let M be a manifold.

- (1) Let L be a (real) line bundle over M. Show that one can associate to L a cohomology class a(L) in $H^1(M, \mathbb{Z}/2\mathbb{Z})$ such that L is trivial if and only if a(L) = 0.
- (2) Let L_1 and L_2 be two line bundles over M. Show that if $a(L_1) = a(L_2)$, L_1 and L_2 are isomorphic.

Exercise 7. Let E_1 and E_2 be two line bundles over M. Show that

$$c_1(E_1 \otimes E_2) = c_1(E_1) + c_1(E_2)$$

Exercise 8. Compute the first Chern class of the tangent bundle a compact complex curve, using the triangulation method, and highlight how it relates to the Euler characteristic of the underlying real surface.

Exercise 9. Compute the first Chern class of the tautological bundle over $\mathbf{P}^1(\mathbb{C})$.

Exercise 10 (Computing using sections). Let Σ be a smooth compact surface (a real 2dimensional manifold) and let E be a smooth line bundle over Σ . A smooth section $s : \Sigma \longrightarrow E$ is called generic if the graph of s intersects the graph of the zero section transversally.

Assume k is the algebraic intersection number of the graph of a generic section and 0_E the zero section. Show that

 $c_1(E) = k \cdot [\Sigma]$

where $[\Sigma] \in \mathrm{H}^2(\Sigma, \mathbb{Z})$ is (a) fundamental class of Σ .

3. Higher dimensional Chern classes

Exercise 11. Let E be a complex vector bundle that is the direct sum of line bundles

$$E = \oplus_{i=1}^m L_i.$$

Show that $c_1(E) = \sum_{i=1}^{n} c_1(L_i)$.

Exercise 12. Let E be complex vector bundle over X, and let L be a line bundle. Assume E is a direct sum of line bundles.

For any r, compute $c_r(E)$ as a function of characteristic classes of E and L.

The formulae obtained in this exercise actually holds true by virtue of a general principle (sometimes referred to as *splitting principle*) that any formulae on Chern classes that holds true for bundles which are direct sums of line bundles is true in greater generality. We refer to *Intersection theory in Algebraic Topology* (https://scholar.harvard.edu/files/joeharris/files/000-final-3264.pdf), Chapter 5, Section 4.

Exercise 13 (Computing using sections II). Let E be an n-dimensional complex bundle over a compact n dimensional complex manifold X. Let s be a smooth section of E that intersects the zero section transversally. Show that $c_n(E)$ is equal to the algebraic intersection number between the graph of s and the graph of the zero section times the fundamental class of X

Exercise 14. Consider the following vector field on \mathbb{C}^3

$$\vec{X} = \frac{1}{x+y+z}(yz\partial_x + xz\partial_y + xy\partial_z)$$

- (1) Show that \vec{X} is invariant under the action of \mathbb{C}^* by multiplication.
- (2) \vec{X} thus passes to the quotient to $\mathbf{P}^2(\mathbb{C})$. Show that \vec{X} vanishes in exactly 3 points.
- (3) Show that the graph of the section \vec{X} in $TP^2(\mathbb{C})$ intersects the zero section transversally.
- (4) Show that $c_2(\mathbf{P}^2(\mathbb{C})) = 3 \cdot [\mathbf{P}^2(\mathbb{C}))].$